sanyo

  • http://www.seasip.info/VintagePC/sanyo.html

  • Capacitor C9 on the board may need to be dealt with if disk access is slow or erratic (it was installed backwards at the factory)."

  • http://www.vintage-computer.com/vcforum/showthread.php?24281-Teac-FD-54A

  • "The PC floppy cable (assuming that you don't have any drives with a READY/ line on pin 34) can be a bit problematical to fabricate. On the other hand, if you can find a Teac FD235HF with the appropriate jumpers or a FD235F (which does have a READY/ line), you're in business, sort of." [[http://www.vintage-computer.com/vcforum/archive/index.php/t-23641.html?s=382f5103d732b9ff22b19f0dcba42069|source]]

  • see [[disk]]

  • index sensor measures optically the hole in the floppy disk. It marks the start of the current track. Read 'index sensor adjustment' in Sams Computer Facts about the Sanyo. I measure 208ms (milliseconds) for one turn of the disk. Around 5 turns a second and 300 turns per minute. Which is right according to 'spindle speed adjustment' part.

  • Weird thing: when I remove the index sensor this has no effect on the readings on TP9 and TP10. There's 10us between the pulses.

  • 'Precompensation adjustment': Connect input of a scope to TP1 on System Board. Set scope sweep to 1uSec, voltage to 2V and trigger to positive slope. Adjust Precompensation Control (RV1) for 2uSec from the rising edge of the first pulse to the rising edge of the second pulse. RESULT: 2uSec 500kHz.

Test pins on mainboard

  • TP1: Precompensation adjustment test. Should measure 2 uSec / 500 kHz. Adjust RV1 to fix.
  • TP2: ??

Drive Track Program

The following Basic program can be used to select Driva A or B, select side 0 or 1 and step the Drive Head to a specific track. To stop the program, press the BREAK key.

10 INPUT "ENTER DRIVE (A OR B)"; D$
20 INPUT "ENTER SIDE (0 OR 1)"; S
30 IF S=0 THEN Y=0 ELSE Y=4
40 IF D$="A" THEN Z=0 ELSE Z=1
50 TS=0: OUT 28, Y+Z: OUT 8,8
60 FOR D=1 TO 500: NEXT D
70 INPUT "ENTER TRACK NUMBER"; T
80 IF T>40 THEN 70
90 IF T>TS THEN TR=T-TS ELSE TR=TS-T
100 IF T>TS THEN C=72 ELSE C=104
110 FOR X=1 TO TR
120 OUT 8,C
130 FOR D=1 TO 5: NEXT D
140 NEXT X: TS=T
150 PRINT "PRESS ANY KEY TO STOP"
160 A$=INKEY$: OUT 8,228: IF A$="" THEN 160 ELSE 70

wordstar manual

http://www.textfiles.com/bitsavers/pdf/microPro/Wordstar_3.3/Wordstar_3.3_Reference_Manual_1983.pdf

debug.com

  • fill memory with 0's: e 0 ffff 0
  • rcx sets cx register. This register is used in debug.com to store the amount of bytes to write to the loaded (or newly created file).

create a program with debug.com

A> debug test.com
- e 100
  B8 {space} 00 {space} 4C {space} CD {space} 21 {enter}
-u
0AAC:0100 B8004C    MOV    AX,4C00
0AAC:0103 CD21      INT    21
-w
-q

asm.com

technical info

Game I/O

  • https://github.com/phillipmacon/m.a.m.e/blob/master/src/devices/bus/a2gameio/gameio.cpp
    Apple II Game I/O Connector
    This 16-pin DIP socket is described in the Apple II Reference
    Manual (January 1978) as "a means of connecting paddle controls,
    lights and switches to the APPLE II for use in controlling video
    games, etc." The connector provides for four analog "paddle"
    input signals (0-150KΩ resistance) which are converted to
    digital pulses by a NE558 quad timer on the main board. The
    connector also provides several digital switch inputs and
    "annunciator" outputs, all LS/TTL compatible. Apple joysticks
    provide active high switches (though at least one third-party
    product treats them as active low) and Apple main boards have no
    pullups on these inputs, which thus read 0 if disconnected.
    While pins 9 and 16 are unconnected on the Apple II, they provide
    additional digital output and input pins respectively on the Sanyo
    MBC-550/555 (which uses 74LS123 monostables instead of a NE558).
    The Apple IIgs also recognizes a switch input 3, though this is
    placed on pin 9 of the internal connector rather than 16.
    ...
                                ____________
                   +5V   1 |*           | 16  (SW3)
                   SW0   2 |            | 15  AN0
                   SW1   3 |            | 14  AN1
                   SW2   4 |            | 13  AN2
                  /STB   5 |  GAME I/O  | 12  AN3
                  PDL0   6 |            | 11  PDL3
                  PDL2   7 |            | 10  PDL1
                   GND   8 |            |  9  (AN4/SW3)
                            ------------